Solution Sheet 4

1. (i) If there is an integral solution to $30x^2 - 23y^2 = 1$ then, when we look at the equation modulo 5, we find that $-23y^2 \equiv 1 \mod 5$, i.e. $-3y^2 \equiv 1 \mod 5$.

We can write this as $-3y^2 \equiv 1+5 \equiv 6 \mod 5$, and divide by -3 to get $y^2 \equiv -2 \equiv 3 \mod 5$. But from the following table we see that this is impossible:

n	$n^2 \operatorname{mod} 5$
0	0
1	1
2	4
3	4
4	1

Note that in this table we have

$$(5-n)^2 = 5^2 - 10n + n^2 \equiv n^2 \mod 5$$

so we need only have taken n = 0, 1 or 2 to have found all possible residues.

(ii) If $5x^2 - 14y^2 = 1$ has a solution then, looking modulo 7, we must have $5x^2 \equiv 1 \mod 7$. Noting that 3 is the inverse of $5 \mod 7$, i.e. $3 \times 5 \equiv 1 \mod 7$, we get $x^2 \equiv 3 \mod 7$. But from the following table we see that this is impossible:

n	$n^2 \operatorname{mod} 7$
0	0
1	1
2	4
3	2
4	2
5	4
6	1

(iii) \bigstar As in part (i) look at the equation modulo 5.

2. (i) Using the hint given, the Diophantine equation $2x^3 + 27y^4 = 23$ becomes $2x^3 \equiv 23 \equiv 5 \mod 9$. Noting that 5 is the inverse of $2 \mod 9$, we multiply both sides by 5 to get $x^3 \equiv 25 \equiv 7 \mod 9$. But from the following table we see that this is impossible:

x	$x^3 \mod 9$
0	0
1	1
2	8
3	0
4	1
5	8
6	0
7	1
8	8

(ii) Look at $7x^5 + 3y^4 = 4$ modulo 7 to see if there are solutions to $3y^4 \equiv 4 \mod 7$. Use the table above:

n	$n^2 \mod 7$	$n^4 \operatorname{mod} 7$	$3n^4 \mod 7$
0	0	0	0
1	1	1	3
2	4	2	6
3	2	4	5
4	2	4	5
5	4	2	6
6	1	1	3

Thus we see there is no solution to $3y^4 \equiv 4 \mod 7$, hence there can have been no integral solution of $7x^5 + 3y^4 = 4$.

(iii) \bigstar To show that 7 never divides $a^4 + a^2 + 2$ for $a \in \mathbb{Z}$ we need show that there are no solutions of $a^4 + a^2 + 2 \equiv 0 \mod 7$. For this we can use the table above:

n	$n^2 \mod 7$	$n^4 \operatorname{mod} 7$	$n^4 + n^2 + 2 \operatorname{mod} 7$
0	0	0	2
1	1	1	4
2	4	2	1
3	2	4	1
4	2	4	1
5	4	2	1
6	1	1	4

3. $(\mathbb{Z}_6, +)$

+	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$
$[0]_{6}$	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$
$[1]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$	$[0]_{6}$
$[2]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$	$[0]_{6}$	$[1]_{6}$
$[3]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$
$[4]_{6}$	$[4]_{6}$	$[5]_{6}$	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$
$[5]_{6}$	$[5]_{6}$	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$

and (\mathbb{Z}_6, \times)							
	×	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$
	$[0]_{6}$	$[0]_{6}$	$[0]_{6}$	$[0]_{6}$	$[0]_{6}$	$[0]_{6}$	$\left[0\right]_{6}$
	$[1]_{6}$	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_{6}$
	$[2]_{6}$	$[0]_{6}$	$[2]_{6}$	$[4]_{6}$	$[0]_{6}$	$[2]_{6}$	$[4]_{6}$
	$[3]_{6}$	$[0]_{6}$	$[3]_{6}$	$[0]_{6}$	$[3]_{6}$	$[0]_{6}$	$[3]_{6}$
	$[4]_{6}$	$[0]_{6}$	$[4]_{6}$	$[2]_{6}$	$[0]_{6}$	$[4]_{6}$	$[2]_{6}$
	$[5]_{6}$	$[0]_{6}$	$[5]_{6}$	$[4]_{6}$	$[3]_{6}$	$[2]_{6}$	$[1]_{6}$

4. \bigstar (\mathbb{Z}_9^*, \times)

×	$[1]_{9}$	$[2]_{9}$	$[4]_{9}$	$[5]_{9}$	$[7]_{9}$	$[8]_{9}$
$[1]_{9}$	$[1]_{9}$	$[2]_{9}$	$[4]_{9}$	$[5]_{9}$	$[7]_{9}$	$[8]_{9}$
$[2]_{9}$	$[2]_{9}$	$[4]_{9}$	$[8]_{9}$	$[1]_{9}$	$[5]_{9}$	$[7]_{9}$
$[4]_{9}$	$[4]_{9}$	$[8]_{9}$	$[7]_{9}$	$[2]_{9}$	$[1]_{9}$	$[5]_{9}$
$[5]_{9}$	$[5]_{9}$	$[1]_{9}$	$[2]_{9}$	$[7]_{9}$	$[8]_{9}$	$[4]_{9}$
$[7]_{9}$	$[7]_{9}$	$[5]_{9}$	$[1]_{9}$	$[8]_{9}$	$[4]_{9}$	$[2]_{9}$
$[8]_{9}$	$[8]_{9}$	$[7]_{9}$	$[5]_{9}$	$[4]_{9}$	$[2]_{9}$	$[1]_{9}$

So the inverse of each element is

$$[1]_{9}^{-1} = [1]_{9}, \qquad [2]_{9}^{-1} = [5]_{9}, \qquad [4]_{9}^{-1} = [7]_{9}, \\ [5]_{9}^{-1} = [2]_{9}, \qquad [7]_{9}^{-1} = [4]_{9}, \qquad [8]_{9}^{-1} = [8]_{9}.$$

5. (i) $[2]_{93}$: Simply observe that $2 \times 47 = 94 \equiv 1 \mod 93$ hence $[2]_{93}^{-1} = [47]_{93}$.

(ii) $[5]_{93}$: To find $[x]_{93}$ for which $[5]_{93} \times [x]_{93} = [1]_{93}$ we need solve $5x \equiv 1 \mod 93$. This can be done by Euclid's Algorithm, but has already been done in the notes, x = 56 being a solution. Hence $[5]_{93}^{-1} = [56]_{93}$.

(iii) $[25]_{93}$: We can use the method as in part (ii) and solve $25x \equiv 1 \mod 93$ using Euclid's Algorithm. Alternatively, note that $[25]_{93} = [5^2]_{93} = [5]_{93}^2$. Hence,

$$[25]_{93}^{-1} = ([5]_{93}^{-1})^2 = [56]_{93}^2 \text{ by part (ii)},$$
$$= [56^2]_{93} = [67]_{93}.$$

(iv) $[32]_{93}$: Perhaps start from $[32]_{93} = [2^5]_{93} = [2]_{93}^5$. Thus

$$[32]_{93}^{-1} = ([2]_{93}^{-1})^5 = [47]_{93}^5 \text{ by part (i)},$$
$$= [47^5]_{93} = [32]_{93}.$$

6. (i) $\mathcal{R} = \{(1,7), (2,5), (3,3), (4,1)\},\$

(ii)
$$S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (4,1), (4,2), (5,1)\},$$

(iii) $T = \{(1,1), (2,4), (3,9), (4,16), (5,25),\}.$

	Reflexive	Symmetric	Transitive
(i)	No	No	Yes
(ii)	Yes	Yes	Yes
(iii)	No	Yes	No
(iv)	Yes	Yes	No
(v)	Yes	Yes	Yes
(vi)	No	No	No

Reasons:

- i) Not reflexive: $(1,1) \notin \mathcal{R}_1$, Not symmetric: $(2,4) \in \mathcal{R}_1$ but $(4,2) \notin \mathcal{R}_1$.
- ii) All properties satisfied.
- iii) Not reflexive: $(1,1) \notin \mathcal{R}_3$, Not transitive: $(2,4), (4,2) \in \mathcal{R}_3$ but $(2,2) \notin \mathcal{R}_3$.
- iv) Not transitive: $(4,3), (3,1) \in \mathcal{R}_4$ but $(4,1) \notin \mathcal{R}_4$.
- v) All properties satisfied.
- vi) Not reflexive: $(1,1) \notin \mathcal{R}_6$, Not symmetric: $(1,4) \in \mathcal{R}_6$ but $(4,1) \notin \mathcal{R}_6$, Not transitive: $(1,3), (3,1) \in \mathcal{R}_6$ but $(1,1) \notin \mathcal{R}_6$.
- 8.

	Reflexive	Symmetric	Transitive
(i)	No	Yes	No
(ii)	Yes	Yes	Yes
(iii)	No	Yes	Yes
(iv) ★	Yes	No	Yes

Reasons:

i) Not Reflexive. Counterexample: 1 ≈ 1 since 1 + 1 is not odd;
Is Symmetric. Proof: x ~ y ⇒ x + y is odd ⇒ y + x is odd ⇒ y ~ x;

Not Transitive. Counterexample: $1 \sim 2$ and $2 \sim 1$ but $1 \not \sim 1$.

7. **★**

ii) Is Reflexive. Proof: for all integers 2x is even so $x \sim x$;

Is Symmetric. Proof $x \sim y \Rightarrow x + y$ is even $\Rightarrow y + x$ is even $\Rightarrow y \sim x$;

Is Transitive. Proof If $x \sim y$, i.e. x + y is even, then x and y have the same *parity*, i.e. they are both odd or both even. So if $x \sim y$ and $y \sim z$ then all three of x, y and z have the same parity. In particular x and z have the same parity and so $x \sim z$.

iii) Not Reflexive. Counterexample: $2 \approx 2$ since 2×2 is not odd;

Is Symmetric. Proof: $x \sim y \Rightarrow xy$ is odd $\Rightarrow yx$ is odd $\Rightarrow y \sim x$;

Is Transitive. Proof: If xy is odd then both x and y are odd. So if $x \sim y$ and $y \sim z$ then all three of x, y and z are odd. In particular x and z are odd and so $x \sim z$.

iv) \bigstar Is Reflexive. Proof: For any integer x we note that x + xx = x(x+1) and one of x or x+1 has to be even, thus $x \sim x$.

Not Symmetric. Counterexample $2 \sim 1$, since $2 + 2 \times 1$ is even but $1 \nsim 2$ since $1 + 1 \times 2$ is not even.

Is Transitive. Proof: Assume $x \sim y$ and $y \sim z$.

Thus x(1+y) = 2m and y(1+z) = 2n for some $m, n \in \mathbb{Z}$. Multiply the first equality by (1+z) to get

$$x((1+z) + y(1+z)) = 2m(1+z).$$

Substitute in to get

$$x((1+z)+2n) = 2m(1+z)$$
.

Rearrange to get

$$x(1+z) = 2(m(1+z) - nx),$$

which implies $x \sim z$.

- 9. (i) No. The sets are not disjoint.
 - (ii) Yes.
 - (iii) Yes,
 - (iv) No. Not every element of the set is in some element of the partition.

10. (i) No. 0 is in neither of the sets,

(ii) No. The sets are not disjoint. An integer $m \in \mathbb{Z}$ is in both T_m and T_{m-1} , for example, $1 \in T_1$ and $1 \in T_0$.

(iii) No. 0 is in both sets,

(iv) Yes.

11.

 $\mathcal{R} = \left\{ \left(1,1\right), \left(2,2\right), \left(3,3\right), \left(4,4\right), \left(5,5\right), \left(1,2\right), \left(2,1\right), \left(3,4\right), \left(4,3\right) \right\}.$

12. (i) $[1] = \{1, 2\}, [2] = \{1, 2\}, [3] = \{3\}, [4] = \{4, 5\} = [5] \text{ and } [6] = \{6\}.$ (ii) $\{1, 2\} \cup \{3\} \cup \{4, 5\} \cup \{6\}.$